

# Innovation for Competitive Advantage in Manufacturing

Randal Karg PIMA/TAPPI Annual Meeting March 2007

#### **Innovation Topics**

- Broaden the concept of technology
- Illustrate the practical management of technology innovation
- Practical principles for managing innovation for competitive advantage

#### Disruptive vs Sustaining Innovation





From Webster's Dictionary:

The application of scientific knowledge, especially in industry or business



### Technology is Everywhere in Your Business

- Human Resources
- Financial Methods
- Strategy and Planning
- Sourcing
- Marketing and Sales
- Manufacturing
- Product Design & Development

#### **Technology- A Management Definition**



#### **Work Process Design**

#### Tools

#### **Standards**

The application of knowledge, especially in business or industry

### Information Architecture Structure



### Results of Using an I/T Architecture



# - Instrument Installation Systems/ What Are These Things?

#### Traditional DP Installation



# -Process Piping

Impulse Piping





# The Conventional Wisdom

- Process Measurements are Critical to Operational Excellence
- Accuracy Requires Routine Calibration
- Installation Should Facilitate Maintainability
- Tubing Fittings are the Obvious Low Cost Piping Method

### Analysis of Experience

- Maintenance Work Order History Revealed 60% of Effort Non-Value Added Activity
  - "Zero Transmitter"
  - "No Problem Found"
- Transmitter Is Not the Problem
  #1 Source of Error & Maintenance, Impulse

#1 Source of Error & Maintenance - Impulse Lines!

- Electronic Transmitters Do Not Fail or Drift
- Over 50% of Field Maintenance Activity is Non Value Added
- Root Cause Failure Analysis Determined That -
  - Most Problems are Caused by Improper Installation
  - Installation for Maintainability Caused Most of the Problems

# The Solution

- Design Standard Installations for High Accuracy and Low Maintenance
  - Standard Designs Reduced by 10X
- Determine Fabrication Method
  - Reduced Set of Standards Enables Shop Fabricated Welded Piping Design
    - » New Designs Significantly Stronger With Reduced Leak Points
    - » Improves Safety and Environmental Performance
- Changed Work Processes for Design and Construction

# A Typical Design



#### Impact On Work Process

- Virtually Eliminated Instrument Installation Design from Detailed Engineering Effort
- Significantly Reduced Field Construction Effort and Cost

### Impact on Construction Process

#### Old Process

- Weld Root Valves to Process Piping
- Obtain Transmitter
- Build Stand or Mounting Bracket
- Mount Transmitter
- Install Impulse Piping
- Install Conduit
- Install Wiring and Verify Continuity
- Verify Calibration

#### New Process

- Weld Root Valves to Process Piping
- Obtain Transmitter and Mounting Kit
- Install Mounting Kit and Transmitter
- Install Conduit
- Install Wiring and Verify Continuity
- Verify Calibration

#### Impact on Installation Costs

#### Cost Breakdown: Avg. Traditional vs. Direct Mount



# Results in the Field -Three Year's Experience

- 90% Reduction in Transmitter Work Orders
- 46% Reduction in Transmitter Maintenance

#### **Instrument Installation Lessons Learned**

 Business Objectives Drive Technology Objectives Technology Solutions Should Not be Searching for a Problem to Solve!

- Use Data to Develop Profound Knowledge
- Variability is the Enemy!
- Separate "Develop Technology" Process from "Implement Technology" Process

#### Instrument Installation Experience



#### **Disciplined Innovation Principles**

 Create the environment for success
 Align innovation to business objectives
 Measure the results of innovations Success is measured against the business objective

- Separate technology innovation from technology application
- Actively manage the work processstandards-tools relationship